Loading
動態規劃——石子歸併
字典樹(Trie Tree)的基本操作

高精度乘法 完全的函數封裝!

Freddy posted @ 2011年9月14日 02:21 in C++ 經典算法 with tags C++ 算法 函數 , 1051 阅读

高精度計算是NOIP中常考常用的算法之一,剛才把我們班康運澤同學寫的高精度乘法要了過來,改成了完全的封裝函數,貼了出來。

代碼如下:

#include<fstream>
using namespace std;
ifstream fin("mul.in");
ofstream fout("mul.out");
int e[220]={5};

int gjdcf(char *mul,char *mul2)
{
    int i,j,lq,lw,q[110],w[110],temp;
    lq=strlen(mul);
    for (i=0;i<lq;i++)
    {
        q[lq-1-i]=mul[i]-'0';
    }

    lw=strlen(mul2);
    for (i=0;i<lw;i++)
    {
        w[lw-1-i]=mul2[i]-'0';
    }

    if (lq<lw)
    {
        for (i=0;i<lw;i++)
        {
            temp=q[i];
            q[i]=w[i];
            w[i]=temp;
        }
        temp=lq;
        lq=lw;
        lw=temp;
    }
    for (i=0;i<(lq+lw+1);i++)
    {
        e[i]=0;
    }
    for (i=0;i<lw;i++)
    {
        for (j=0;j<lq;j++)
        {
            if ((e[j+i-1]>=10)&&((j+i-1)>=0))
            {
                e[j+i]=e[j+i]+e[j+i-1]/10;
                e[j+i-1]=e[j+i-1]%10;
            }
            if ((w[i]*q[j])<10)
            {
                e[j+i]=(w[i]*q[j])+e[j+i];
            }
            if ((w[i]*q[j])>=10)
            {
                e[j+i+1]=(w[i]*q[j])/10+e[j+i+1];
                e[j+i]=(w[i]*q[j])%10+e[j+i];
            }
            if ((e[j+i])>=10)
            {
                e[j+i+1]=e[j+i]/10+e[j+i+1];
                e[j+i]=e[j+i]%10;
            }
        }
    }

    return lq+lw;
}

void print(int p)
{
    int i;
    if (e[p-2]==0)
    {
        fout<<0;
    }
    else
    {
        if ((e[p-1]==0)&&(e[p-2]!=0))
        {
            for (i=p-2;i>=0;i--)
            {
                fout<<e[i];
            }
        }
        else
        {
            for (i=p-1;i>=0;i--)
            {
                fout<<e[i];
            }
        }
    }
}

int main()
{
    char aa[101],bb[101];
    fin>>aa>>bb;
    print(gjdcf(aa,bb));
    return 0;
}

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter